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The ~ dielectric relaxation of poly(vinylidene fluoride) crystal form II is studied under pressures up to 
7 kbar at temperatures from 100 ° to 200°C. The isotherm for variation of the dielectric increment with 
pressure shows a maximum. This behaviour is examined on the basis of models of molecular motion for 
the c< relaxation previously proposed; longitudinal disorder exists in the crystalline chains. The 
calculations reproduce the experimental results except for the pressure coefficient of the dielectric 
increment. The metastable conformation exists together with the most stable conformation in one chain, 
and dipole reversal parallel to the molecular axis occurs throughout the whole chain. 
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INTRODUCTION 

Dielectric relaxation due to molecular motion of polymer 
chains constrained in crystalline fields has been analysed 
mainly by the site model1, which was originally proposed 
by Hoffman and Pfeiffer for long-chain compounds 2. The 
limitation of the application of the site model to polymeric 
substances is not still clear. Recently, Boyd et al. 3"4 
showed that rieither the Onsager-Kirkwood equation nor 
the simple site model could explain the temperature 
dependence of the dielectric increment in polyethylene; 
the dielectric increment decreases with temperature faster 
than as the reciprocal of the absolute temperature. They 
argued that this temperature dependence should be due to 
the defects in the crystalline chains participating in the 
relaxation process. 

In a previous paper 5, we ascertained that the ~ dielectric 
relaxation of poly(vinylidene fluoride) (PVDF) involves 
only the component of the dipole moment parallel to the 
molecular axis and that the defects in the crystalline 
region play an important role in the relaxation. We 
proposed two possible models for the dipolar orientation. 
However, the size of the motional unit and the role of 
defects are not still clarified. 

In the present paper, the ionic contributions in the low- 
frequency region were reasonably subtracted by the 
method developed recently. Then ~ relaxation was studied 
over a wider temperature range under pressures higher 
than atmospheric pressure; the melting point increases 
with pressure. The dielectric increment-pressure curve 
showed a maximum at constant temperature, which is not 
expected from the simple site model. The molecular 
motion associated with ~ relaxation is clarified by taking 
account of the pressure and temperature dependence of 
the dielectric increment based on the models previously 
proposed. 

EXPERIMENTAL 

The material used was KF-polymer no. 1000 supplied by 
Kureha Chemical Ind. Ltd. The material was melted in 
vacuum at 220°C and slowly cooled to room temperature. 
Then the sample was annealed at 160°C for two days in 
order to avoid annealing effects during the dielectric 
measurements. 

The crystal form of the sample was determined by wide- 
angle X-ray diffraction to be form II and no orientation 
was observed. The long period was 150/1~ determined by 
small-angle X-ray scattering. The density was 
1.797 gcm-  3 at 20°C and the degree of crystallinity X is 
estimated at about 0.6 after the data of Nakagawa and 
Ishida 6. 

The dielectric measurements were carried out with a 
transformer bridge (Fujisoku DLBll02A) over the fre- 
quency range from 102 to 3 x l0 s Hz at temperatures from 
100 ° to 200°C and under pressures up to 7 kbar. The 
changes in the long period and the density before and after 
the dielectric measurements were not detected within the 
experimental error. 

The high-pressure cell (Hikari Kikai Ltd) used for the 
dielectric measurements is shown in Figure 1. The 
pressure-transmitting fluid was a silicone oil (Toshiba 
TSF451) and pressure was measured by a calibrated 
manganin gauge. 

Silver was evaporated onto both surfaces of the sample 
to form electrodes of area 79.8 mm z. The electrodes of 
evaporated films were so thin (1000/It) that the size of the 
electrodes changes with temperature and pressure in the 
same way as the sample. Therefore, the number of dipoles 
to be considered in the present measurements remains 
constant: the constant number of dipoles contributes to 
the dielectric constant in the present case. Corrections for 
the cell constant were made as follows. The specific 
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Figure 1 The high-pressure cell for dielectric measurements: 
(a) connector; (b) upper end plug; (c) packings; (d) terminals; 
(e) heater; (f) sample; (g) thermocouple; (h) inlet for oil 

volume of the amorphous parts of PVDF in the present 
temperature and pressure region has not been reported so 
far. For the temperature dependence of the specific 
volume of the crystalline parts V¢ and the amorphous 
parts V,, the data of Nakagawa and Ishida 6 are used. The 
pressure coefficients of V~ and ~ are assumed to be 
independent of temperature and their pressure coefficients 
are adopted from the data of Tanaka et al. 7 at 150°C. The 
specific volume of the sample V~(t,P) at temperature t and 
pressure P is related to V, and V, by 

~ = Z ~ + (  1 - Z ) ~  

and then given by: 

l/s(t,0) = 0.555 + 1.86 x 10- at + 4 x 10- 7t2 

V~(t,P) = V~(t,O)(1-4.00 x lO-2p 
+7.03 x 10 -3p2-5 .47  x lO-4p a) 

(la) 

( lb )  

where t is temperature in degrees Celsius and P is pressure 
in kilobars. Then the cell constant C(t,P) is expressed by: 

C(t,P) 1 V,(t,P)- Yo 
- - = I - ~  

Co 3 V o 
(2) 

where C O and V o are the cell constant and the specific 
volume of the sample at room temperature and under 
atmospheric pressure, respectively. The maximum contri- 
bution from the second term in equation (2) is 0.019. 

RESULTS 

The frequency dependence of the dielectric constant e' and 
dielectric loss e" at 180°C at  various pressures is shown in 
Figure 2. The frequency at the loss maximum con- 
tinuously decreases with increasing pressure up to 7 kbar; 
no sudden change in the relaxation mechanism occurs in 
this pressure range. The increase in e' and e" in the low- 
frequency region is attributed to interfacial polarization 
and its frequency dependence is given byS: 

e~(og) = A~o-= cos(~m/2) 

(3) 
e'~'(to) = Ato-"  sin(rim/2) 

where co is angular frequency and A and m depend only on 
temperature and pressure (0~<m~< 1). When, taking the 
data at 180°C as examples, we put m=0.6 and the values 
of A are determined by a trial-and-error method, the 
contribution from interracial polarization can be sub- 
tracted from the observed results. The resulting values of 
~' and ~", which can be regarded as the values of the 
relaxation, are shown in Figure 3. In this figure, the 
dielectric constant is nearly constant at low frequency and 
the dielectric loss curves represent broad peaks typical of 
polymeric substances. The dielectric constant e' and 
dielectric loss E' nearly obey the Cole-Cole circular law. 

When it is assumed that the increase in ~' and e" at low 
frequency is expressed by equation (3) and that the 
resulting e' and E' obey the Cole-Cole law, the observed 
values of e' adn e" are expressed by: 

A~ cos~ 

e'(°9) = e® + [1 + e2a~ + 2eBX c o s ~ ] ' / 2  

(4) 

15 _"---- A ~ =  "".--, ~ 

I0 

\ 

• • = • o 

01 e I I 
2 3 4 5 

log f (Hzl 

Figure 2 T h e  f r e q u e n c y  d e p e n d e n c e  o f  d i e l e c t r i c  c o n s t a n t  ~' a n d  

loss  e" a t  1 8 0 ° C  u n d e r  v a r i o u s  p ressu res :  © ,  2 . 0  k b a r ;  O ,  3 . 0  
kbar; /k, 4.0 kbar; A, 5.0 kbar; 17, 6.0 kbar; II, 7.0 kbar. No 
correction is made for the cell constant in Figures 2 and 3 
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Figure 3 The contribution from the low-frequency process 
(interracial polarization) is subtracted from the values in Figure 2. 
The symbols are the same as in Figure 2 

As sintk 

d'(c°)= [1 +e2PX + 2eaX c o s ~ l  1/2 

• _ . .  {nm'X 
+ Ato sml - - /  

k 2 / .  
where e~ is the limiting value of the ttielectric constant at 
high frequency, As is the dielectric increment, fl is the 
Cole-Cole parameter representing the distribution of 
relaxation times, x =In coz where ~ is the principal re- 
laxation time, and 

=arctan( 1\ e a~ sin(nil/2) "~ ¢ 
+ e ~ cos(nil~2)] 

By the least-squares method, the values of these para- 
meters are determined at each temperature and pressure. 
The dielectric increment and the relaxation time thus 
obtained are shown in Figures 4 and 5. In the present 
ranges of temperature and pressure, the values of fl are 
0.70-0.78 and those of m are 0.584).62, and they do not 
depend significantly on temperature and pressure. 

It is seen from Figure 4 that, firstly, the dielectric 
increment-pressure curve shows a clear maximum above 
120°C. Secondly, the pressure at which As reaches a 
maximum increases with increasing temperature. Thirdly, 
the peak value of As decreases with temperature. The 
activation volume can be obtained from Figure 5; it 
decreases from 30 to 20 cm 3 mol-  z with increasing tem- 
perature and also shows a slight pressure dependence. The 
activation enthalpy is obtained from a plot of log z vs 1/T 
and the activation internal energy is about 23 kcal mol-  1. 
These values roughly agree with the results ofSasabe 9 and 
Yano z o. 

DISCUSSION 

As in the previous paper s , the temperature and pressure 
dependence of As is examined on the basis of the two-site 
model. The dielectric increment Ae is expressed by: 

4re 2 h2/" AG \ As/x=3 KN, s e c  (s) 

where k is the Boltzmann constant, T is the absolute 
temperature, N is the number of dipoles per cubic 
centimetre, # is the component of the dipole moment 
parallel to the molecular axis, AG is the difference in the 
Gibbs free energy between the two sites and K is a 
correction factor including two factors, i.e. the ratio of the 
internal field to the applied field and the correction factor 
for taking the value of dipole moment in vacuum. When 
AU, AS and AV are the differences in the internal energy, 
the entropy and the volume between the two sites, 
respectively, AG is given by: 

6 t , , , 

• ^ o / o  / \ b ~ !  

O / • • ~ 0  

T I I I 
0 2 4 6 

P (kbar) 

Figure 4 The pressure dependence of the dielectric increment at 
various temperatures: A, 100°C; A, 120°C; ©, 140°C; 0, 16GC; 
r-i, 180°C; II, 200°C 

I 

i 

-3 I I I 
0 2 4 6 

P (kbar) 

Figure 5 The pressure dependence of relaxation time. The 
symbols are the same as in Figure 4 
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AG = A U -  TAS+ PAV (6) 

As shown in the previous paper, the 0t relaxation involves 
only the polarization parallel to the molecular axis: dipole 
reversal due to conformation change from TGTG to 
GTGT. As there is no entropy difference between the two 
sites due to the conformation, AS is assumed to be zero by 
neglecting the difference in the volume and the vibration 
in each site. Moreover, AU and AV are assumed to be 
positive and constant in the measured temperature and 
pressure range. Then, from equations (5) and (6) Ae will 
decrease with pressure for an isothermal process, though 
it may have a maximum with respect to temperature for 
an isobaric process. 

For the Onsager internal field which is applicable to a 
spherical molecule, the term K is given by: 

K = [(too + 2)/3] 2 3e0/(2to + e=) 

where t0 is the limiting value of the dielectric constant at 
low frequency. It must be examined, however, whether a 
molecule can be approximated by a sphere or by an 
ellipsoid in accordance with the model of the molecular 
motion. In the following discussion, the temperature and 
pressure dependence of K is neglected. 

Thermodynamics of dielectrics 
In a dielectrically isotropic system, the Gibbs free 

energy G of the system is considered to be a function of 
temperature T, pressure P and electric field E. Its total 
differential can be expressed by the well known relation: 

M 
dG = - SdT + VdP----dE 

4~ 
(7) 

where S is the entropy, V the volume and M the 
polarization of the system. For a system in which M is 
proportional to E, the dielectric increment Ae is given by 
M/E. From equation (7), we find for an isobaric and for an 
isothermal process, respectively, that: 

Dielectric increment 
For simplicity, let us consider the quantity TAe/z 

instead of Ae/Z. According to the simple two-site model 
with definite potential wells, where N and # are inde- 
pendent of temperature and pressure, TAe/Z is a measure 
of sech2(AG/2kT) and will increase with temperature and 
decrease with pressure. 

From the experimental results shown in Figure 4, TAe/z 
for the six isotherms versus pressure are plotted in Figure 
7 (Z=0.6). Above 120°C, TAe/z reaches a maximum at 
pressure Pm~(T). The pressure Pm~x(T) increases with 
increasing temperature. The peak value of TAe/z in- 
creases slightly with temperature. In isobars at pressure 
between 1 and 4 kbar, TAt/z also has a maximum at 
temperature T~x(P), but the accuracy of Tmax(P) is not 
good because an isobar includes only five pressure points 
at most. The temperature dependence of Pm,x(T) and the 
pressure dependence at Tm~(P) are shown in Figure 8. The 
relations P~x(T)and T~(P)can be regarded as shown by 
the same straight line whose slope 0 is 0.0378 kbar K-1 
and which crosses the abscissa for P=0kba r  at 
T=357K. 

The experimental results obtained are not consistent 
with the behaviour predicted by the simple two-site 
model. We will thus analyse these data on the basis of the 
two models of molecular motion previously proposed 5, 
where N and/or # depend(s) on temperature and pressure. 

Here, brief explanations of the two models are given. 
TGTG conformation (hereafter referred to as up state or 
up segment) and GTGT conformation (down state) are 
considered to coexist in one chain in a lamella. In model 1, 
a conformational defect located at the boundary between 
up segment sequence and down one is activated thermally 
and moves along the molecular axis. This defect motion 
causes the reversal of dipole moments along the molecular 
axis. In this model the number of dipoles corresponds to 
that of the defects and the magnitude of the dipole 
moment is determined by the range in which the defects 
can move. In model 2, the location of the defects in a chain 
is fixed during the dipole reversal. Though the reversal of 
the dipole moment occurs throughout one chain, the total 
moment of a chain is the vector sum of the moments of all 

and 

8n:\ t3P Jr,,, 

(8a) 

(8b) 

From the contour map of Ae shown in Figure 6, it is seen 
that, in region A, Ae increases with increasing temperature 
and decreasing pressure, while in region B, on the 
contrary, Ae decreases with increasing temperature and 
decreasing pressure. According to equations (8a) and (8b), 
both the entropy and the volume of the system increase by 
applying an electric field in region A. Therefore, in region 
A the system is in an ordered state for the orientation and 
the packing of dipoles, but in region B the system becomes 
a disordered state. However, the broken line in Figure 6 
separating the regions A and B does not necessarily imply 
a phase change from 'phase A' to 'phase B'; as mentioned 
above, even in the two-site model, which does not have a 
phase change at all, the sign of d(Ae)/aT changes with 
temperature. 

o 
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Q. 
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Figure 7 The pressure dependence of TAe/Z. The symbols are 
the same as in Figure 4 

the segments in a chain because up and down segments 
are mixed in a chain. Here, one segment corresponds to 
two monomers whose conformation is TGTG or GTGT. 

The defects under consideration are thermally created 
in a chain and the defect density should increase with 
increasing temperature and decreasing pressure. Though 
the molecular motion causing the = relaxation is also 
activated thermally, the lifetime of the defects is con- 
sidered to be much longer than the relaxation times of the 

relaxation. In the following discussion the density of 
defects is assumed to be an equilibrium value at a given 
temperature and pressure. 

In model 1, the dipole moment can be assumed 
constant, i.e. the range of the defect movement is unaltered 
with temperature and pressure, but the number of dipoles 
(which is equal to the number of defects) increases with 
increasing temperature and decreasing pressure. Accord- 
ingly, the temperature and pressure dependence of TAe/z 
cannot be explained by model 1. 

In model 2, the number of dipoles, i.e. that of chains in 
crystalline lamellae, is constant, while the dipole moment 
(which is proportional to the difference in the number 
between up segments and down ones per chain) depends 
on the arrangements of up and down segments in a chain. 
The arrangements will depend on the energy difference 

Ag = A u -  TAs + PAy 

between up state (assumed the most stable conformation) 
and down state (thus, metastable one), and on the defect 
formation energy 

W = U x - TS x + PV  1 

Here, AO, Au, As and Av are the differences in the Gibbs 
free energy, the internal energy, the entropy and the 
volume between up and down states and W, Ut, S 1 and V l 
are the Gibbs free energy, the internal energy, the entropy 
and the volume for defect formation, respectively. The 
difference in the entropy As between up (TGTG) and 
down (GTGT) states is assumed to be zero as in the case of 
AS. Moreover, the defects are assumed to be of T T  
conformation; we can put S 1 =0. 

As the defects exist at the boundaries between up 
segments sequences and down segments sequences, the 
difference in the number of up and down segments per 
chain becomes smaller as the number of defects increases. 
Then, the dipole moment # decreases with increasing 
temperature and decreasing pressure. In the case in which 
the energy difference Ag between the two states is do- 
minant in determining the arrangements, the ratio of the 
number of down segments to the number of up segments is 
expressed by exp(- Ag/kT); the dipole moment decreases 
with increasing temperature and decreasing pressure in 
this case, too. Both these effects bring about the reduction 
of the dipole moment with increasing temperature and 
decreasing pressure. Therefore, together with the term 
sech2(AG/2kT) in equation (5), TAe/Z will have a ma- 
ximum with respect to both temperature and pressure in 
the case of model 2. 

Since, in this way the observed maximum in TAe/% with 
respect to temperature and pressure is qualitatively 
explained by model 2, we try to estimate those values of 
the parameters which give the observed Pmax(T) and 
Tma~(P). 

Neglecting the size of the defects, we regard the 
arrangements of the segments in a chain to be described 
by the simple Markov process with two states, that is, up 
and down states. When the transition probability matrix 
is written as: 

. = ( , . q  , ,9, 

TAe/% is given from equations (5) and (A.9): 

TAe 4n 2 2 / AG \F [ p _ q \ 2  : o.0soo. 

4pq(2-p -q )  
(p+q)3 

1 8 p q ( 1 - p - q ) r ,  ,, ] 
N, ~-~q-q)~" I - ' - U - P - q ) N ' ]  

J 
(10) 

where the dependence of AG on the arrangements is 
neglected. In these equations, 1 - p, p, q and 1 - q are the 
transition probabilities for up-up, up-down, down-up 
and down-down successions, respectively, No is the 

Pc 
o r~ v' 

c:L 

I ¢ 

m 

I E I r~ 
v E D  120 160 

T (°C) 

I 

J 

I 
180 

Figure 8 Relations of Pmax(T) and Tmax(P ). Open circles indicate 
Pmax(T) obtained from Figure 7 and full circles indicate Tmax(P ) 
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number of segments per unit volume (9.1 x 1021 carl - 3),/.t0 
is the component of dipole moment of one segment 
parallel to the molecular axis (1.85 D) and N, is the 
number of segments per chain. From the long period of 
150 A, the degree of crystallinity of 0.6 and the c-axis 
dimension of the unit cell of 4.92 A, 11 N, is estimated as 
about 20. The distribution of the lamellar thickness is 
neglected in deriving equation (10). In the square brackets 
in equation (10), the first term multiplied by N~ is the 
square of the average of the difference between the 
number of up segments and that of the down segments per 
chain and the second term represents the distribution 
around the average value. 

When the defect density is given by the thermal 
equilibrium value, p and q are expressed in terms of Ag 
and W, but as there are six parameters to be determined, 
the following two extreme cases are examined. 

Case (i): the energy difference Ag between up and down 
states is small enough to neglect the first term in the 
square brackets in equation (10). In this case, from 
equation (A.3), p and q are given by: 

(11) 
P=q= 1 +exp(W/kT) 

AU . / AU \ U 1 eU#*r°--e2U,/kr°/N~ 
2k Totanla~2-~o)=2--~o eV,/kr°_ (eW,/kro_ l)/N~ 

(16) 

O= U a/ToV 1 (17) 

where 0 is the slope of the straight line in Figure 8. From 
equations (15), (16) and (17), when one of the parameters, 
for example Ut, is given, the other parameters, i.e. 111, AU 
and A V, can be determined. 

In model 2, one dipole corresponds to one chain. Then 
the value of K should be calculated for an ellipsoidal 
molecule with a distribution of dipole moments. If the 
dipole distribution is replaced by a mathematical dipole 
at the centre, K can be calculated from the formulae for 
the internal field and the reaction field of an ellipsoid 12'13 
to be: 

K =  [1 +(ego - 1)All 2 %/[% + (s® -%)AQ 

where 

(18) 

gO 

A,=T f ds/(s+a2)3/2(s+b2)'/2(s+c2)l:2 (19) 

o 

Case (ii): Ag is finite and the main contribution in the 
square brackets in equation (10) is Ns[(p-q)/(p+q)] 2. 
From equation (A.3), p and q are given by: 

p =  

q= 

1 + exp(Ag/kT) 

1 
1 + exp( -  Ag/kT) 

(12) 

In case (i), from equations (I0) and (11), TAe/x is given 
by: 

where 

TAez =4rCKNo#gF(T,P) 
3k 

/ AG \{ e 2w/kr - 1) 
F(T,P)~-sech2[~T)~eW/kr- ~ 

(13) 

(14) 

The relations of Pm~(T) and Tm~(P) are obtained by 
differentiating F(T,P) with respect to P and T, 
respectively: 

and 

OF(T,P) p=Pmax = 0 Pmax(T) : OP 

Tm~(P) : dF(T,P) =0 

As both the relations P~(T) and Tm~(P) give the same 
linear function in the observed temperature and pressure 
range, i.e. around P = 0 k b a r  and T=T0=357K, the 
relations between parameters are obtained as follows: 

VJAV= Ux/AU (15) 

and a, b and c are the semi-major axes of an ellipsoid 
(a>b>c). When an ellipsoid is approximated by a 
spheroid with the longest major axis given by the lamellar 
thickness (90 A) and the other two major axes by the unit 
cell dimensions (4.9 A for each), the value of K ranges 
from 1.14 to 1.15 for the a relaxation. The value of K is 
taken to be 1.14 in the numerical calculations of TAe/Z. 

By fitting the calculated values of TAe/x to the experi- 
mental ones at P,~,, we obtain the values of the para- 
meters as AU=I.5  kcal tool -1, AV=4.4 cm a mo1-1, 
U l = 1.8 kcal tool- 1 and I"1 = 5.4 ern 3 tool- 1. The values 
of TAe/Z calculated from equation (13) are shown in 
Figure 9a. 

In ease (ii), from equations (10) and (12), TAe/X is given 
by: 

~; 2/AG \ 

fN, tanh2( Ag "~ + sech2( Ag "~ x 
l \2kTJ ~2kTJ] 

t20) 

In the same way as case (i), the following relations between 
parameters are obtained: 

AV/AU = Av/Au (21) 

AU ,/AU \ Au 
2kTotanh~o)=2--~oo(Ns-1)tanh(2~To) 

(22) 

O=5U/ToAV (23) 

By fitting the calculated values to the experimental ones at 
Pm~, we obtain .the values of parameters as 
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Figure 9 Calculated results of FA~/z: (a) case (i) and (b) case 
(ii). Curve A, 120°C; B, 160°C; C, 200°C. Parameter values are 
given in the text 

AU = 1.3 kcal mol-  1, AV = 3.9 cm 3 mol-  x, 
Au = 0.92 kcal mol-  1 and Av = 2.8 cm 3 mol-  1. The calcu- 
lated results of TAe/x are shown in Fioure 9b. 

No significant difference is seen in Fioures 9a and b. 
Therefore, we cannot decide which case is preferable for 
the ~ relaxation. 

The parameter values obtained are 5-20% of the 
activation parameters and so they are considered reason- 
able values. The calculated results explain the experimen- 
tal ones, but the pressure dependence of TAe/x is much 
smaller than the experimental results. The discrepancy 
may be due to the approximations used to derive 
equations (17) and (22). 

We can check the alternatives of these two cases by 
examining the dependence of TAe/~ on N,. Nakagawa 
and Ishida aa reported that, at atmospheric pressure, the 
dielectric increment increases linearly with the lamellar 
thickness but the dielectric increment does not become 
zero by linear extrapolation of the lamellar thickness to 
zero. Their results may indicate that the present two cases 
coexist in the g relaxation. If these two cases are mixed, we 
cannot determine all the parameters by the present 
method because the data available are insufficient. 

Structural analyses recently reported suggest that va- 
rious disordered structures exist in crystal form II of 
PVDF a5,16; these reports justify the present treatments. 
The dynamical mechanisms of the polarization along the 
molecular axis are examined by a kink propagation and 
the activation energy obtained by the calculations agrees 
with the experimental results 17. 

CONCLUSIONS 

The molecular motion causing the ~ relaxation in crystal 
form II of PVDF is essentially the one that changes 
TGTG conformation into CaTGT one. This molecular 
motion occurs throughout the chains in crystallites. Since 
the metastable conformations exist together with the most 
stable ones in a chain, the dipole moment of one chain 
decreases with increasing temperature and decreasing 
pressure. As a result, the dielectric increment shows a 
maximum with respect to pressure and temperature. 
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APPENDIX 

When each chain is assumed to be independent and has a 
different value of dipole moment, N# 2 in equation (5) 
should be written as: 

N s N~ 

i = l  j = l  

E ~i~j 

(A.1) 

where N, is the number of segments per chain and Pi is the 
dipole moment of the ith segment in a chain which equals 
+ #o or -Po.  We consider the following situations. (1) Up 
state (1-state), the segment of which has a dipole moment 
of + #o, is the ground state. (2) Down state (2-state), the 
segment of which has a dipole moment of -#o ,  has a 
higher energy than up state by Ag. (3) Between the up state 
sequence and the down state one, a defect should 
intervene and the defect formation energy W is necessary. 

Under these conditions, we regard the arrangements of 
the segments in a chain to be described by the simple 
Markov process. When the transition probability from i- 
state to j-state is written as Pu (i, j= 1, 2), from the 
definition of the probabilities 

2 

p0= 1 
j = l  

the probability transition matrix P can be expressed by: 

p = ( 1 - p q  1-qP ) (A.2) 

From the above conditions, p and q are given by: 

P =e-(Ao+W)/RT q :e-(W-ao)/kT 
1 - -p  1 - - q  

and hence: 

p = (1 + e tag+ W ) / k T ) -  1 

q = (1 + e Iw- AoVlr )- 
(A.3) 
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Then from equation (A.1), N(/g  2)  can  be expressed as 
follows: 

N(#2)=N[N,"~+2p2o Z 
L I ~</<j~<N. (A.4) 

(091,tO2 ) P i U P S -  i U P ' V ' - s ( : )  1 

where the matrix U is given by 

and the initial vector (Wx, t~2) is assumed to be given by the 
fractions of up segment and down segment, respectively, 
that is: 

q P (A.6) 0 ) 1 = - -  (.O2= p+q p+q 
Since pm can be calculated to be: 

pro= l__L(qp+q\q ~)+(1-p-q)"(pp+q \q :~) (A.7) 

the sum in equation (A.4) is given by: 

(oil , o J 2 ) p i u p J -  iUP'V'-  1 ( I )  
1 <~i<j<~N, 

=½NAN - 1)(P-q] 2 
t P + q /  

+ ( N s _  1 "4pq(1 - p - q )  
] (p+q)3 

(A.8) 

4pq(1 q){12 _ (1 - p -  q)N'-l] ~ p 

(p + q)* 

Substituting into (A.4) and from N N  s = No, we obtain: 

N ( #  2) = N ' 2V N f p _q,~ 2 
°'°L + 

4pq(2--p--q) 
(p + q)3 

1 s 8pq~q)-~q)[1-(1 _p_q)N,]] 
(A.9) 
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